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Using aggregated data from one global social network (Facebook), I provide preliminary evidence that, even 

though non-geographical, social-network based connectedness between German municipalities and a given 

COVID-19 hotspot (Heinsberg) is significantly associated with COVID-19 prevalence, COVID-19 was not more 

likely to spread across municipalities with stronger social-network connections. Locations with a higher number of 

social ties to Heinsberg generally had more confirmed COVID-19 cases by March 30, 2020 only after a certain 

threshold is reached; otherwise, this relationship is actually negative. These associations are robust to the inclusion 

of controls for physical distance to the hotspot municipality, per capita income, population density and to the 

addition of data from late November. 

 
Introduction ................................................................................................................................................................ 2 

Literature Review ....................................................................................................................................................... 3 

Analysis ........................................................................................................................................................................ 4 

Method and data ..................................................................................................................................................... 5 

Results ...................................................................................................................................................................... 7 

Discussion .................................................................................................................................................................... 9 

Conclusion and Avenues For For Future Research .............................................................................................. 10 

Appendix COVID-19 Cases in German municipalities with data as of November 22, 2020 ............................. 11 

Appendix. Robustness checks .................................................................................................................................. 11 

Appendix: Social Connectedness versus physical distance across Europe .......................................................... 21 

Appendix. Results with data from late November 22, 2020 .................................................................................. 24 

Appendix. Summary statistics ................................................................................................................................. 25 

References ................................................................................................................................................................. 27 

 
Table 1. Main models ................................................................................................................................................... 8 

Table 2. Full (Main) Models ...................................................................................................................................... 12 

Table 3. Models with different parameterization of geographic distance .................................................................. 15 

Table 4. Regression of Social- on Geographic (distance) Connectedness ................................................................. 23 

Table 5. Summary statistics ........................................................................................................................................ 25 

 
Figure 1. COVID-19 Cases in German municipalities with data as of March 30, 2020 .............................................. 5 

Figure 2. Social connectedness of Heinsberg ............................................................................................................... 5 

Figure 3. Binscatter (Heinsberg as unit of observation, data from March 30, 2020) ................................................... 9 

Figure 4.COVID-19 Cases in German municipalities with data as of November 22, 2020 ....................................... 11 

Figure 5. Heat maps of the social network distributions of Kiel and Freiburg im Breisgau ...................................... 22 

Figure 6. Binscatter (Heinsberg as unit of observation, data from November 22, 2020) ........................................... 25 

 
Equation 1: (Relative Probability of) Social Connectedness ........................................................................................ 6 

Equation 2: Empirical Specification ............................................................................................................................. 6 

Equation 3: Empirical Specification ........................................................................................................................... 21 



2 
 

 

Introduction 

One way in which we can begin to understand the intricacies of the spread of pandemic diseases such as 

COVID-19 is by finding out which persons are more likely to experience physical interactions with each 

other (Pastore y Piontti et al. 2019; Kuchler et al. 2020b). Namely, given that social connections affect 

patterns of physical interaction, the degree of social connectedness between locations is crucial as to 

determine the risk of experiencing future outbreaks. However, the geographic composition of social 

connections has proven to be hard to quantify, especially in comparable manners (Bailey et al. 2018). I 

confront this challenge in this article by using recently released, aggregated data from one of the biggest 

global social networks (Facebook) to quantify social connections between German municipalities. The 

objective of this article is to assess the outbreak of the 2020 COVID-19 pandemic at the municipal level in 

Germany and to test the generalizability of previous results that build upon the USA and Italy (Bailey et al. 

2018; Aref et al. 2020; M. Bailey et al. 2019; Charoenwong et al. 2020). 

 

In particular, I use the index for social connectedness between NUTS-3 locations (municipalities) in 

Germany. That covariate measures the probability that users of this social network in municipality-dyads 

are Facebook friends with each other (Bailey et al. 2018). I hypothesize that locations connected through a 

number of Facebook friendship links are more likely to have more physical interactions between their 

inhabitants, which will eventually lead to more opportunities for contagion of communicable diseases. 

Recent works have shown the potential of this novel data for the study of phenomena, for instance, travel 

patterns across European (NUTS-2) regions and within New York (M. Bailey et al. 2019; Aref et al. 2020), 

and trade between all countries and Europe (Bailey et al. 2020a). Another group of authors found out that 

counties more connected  to New York had higher likelihood of being destinations for people that fled the 

city during the COVID-19 pandemic (J. Coven und A. Gupta 2020). It was also found out that US 

municipalities with higher (Facebook-based) social connectedness to China and Italy complied to a higher 

extent with mobility restriction ordinances and suggested that social connections are channels of 

information about the pandemic, in the end affecting compliance with, and impact of, mobility restrictions 

(Charoenwong et al. 2020). 

 

I proceed as follows. I first review relevant literature, followed by the description of the data that I will use 

throughout the article, afterwards I provide a description of the method of analysis, last, I present and 

discuss the results. In the end, I provide evidence that municipalities in Germany with stronger social 

connections to COVID-19 hotspot municipality Heinsberg actually had less confirmed COVID-19 cases 

per inhabitant as of March 30, 2020. This result holds after controlling for physical distance, demographic 

characteristics, and even after expanding the period of observation to November 2020. In line with previous 

works, the results here presented highlight that social connectedness has indeed non-negligible explanatory 
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value – in addition to geographical distance and other epidemiological factors – to understand the spread 

of COVID-19 across Germany in general and related to one early hotspot in particular. However, the results 

also indicate that the positive association between COVID-19 prevalence and Facebook-based social 

connectedness identified in US municipalities and Italian provinces might not be generalizable to all 

countries. 

 

Literature Review 

 

More generally, my results contribute to a scholarship that has applied network theory to construct spatial 

epidemiological models (Keeling und Eames 2005; M. J. Keeling und P. Rohani 2011; Danon et al. 2011). 

This literature goes beyond the basic assumption that people (within a population) are equally likely to 

interact with each other; instead, these scholars provide a more accurate picture of the dynamics of real-

world connections (Chaoqi Yang et al. 2020; Mossong et al. 2008; Newman 2002). In particular, this article 

attempts to contribute to a growing literature that focuses of how social media and Internet-based 

communication can be useful for tracking communicable diseases. This literature has been divided in at 

least three general research agendas (Kuchler et al. 2020c). Some researchers interested in explaining public 

health outcomes have used content from other platforms, for instance Instagram (CORREIA et al. 2016), 

Wikipedia (Generous et al. 2014) and Twitter (Garzon-Alfonso und Rodriguez-Martinez 2018). Another 

group of scholars have used surveys and crowd-sourced data in order to track possible disease symptoms 

and identify potential outbreaks (Smolinski et al. 2015; Paolotti et al. 2014). Finally, another group of 

investigators made use of geo-located data in order to monitor motion patterns of individuals and to forecast 

the spread of diseases (Bengtsson et al. 2015; Wesolowski et al. 2015; Peixoto et al. 2020). More 

comprehensive reviews on it has been done elsewhere (P Giuliano und I Rasul 2020; Aiello et al. 2020). 

 

There are a couple reasons that suggest that social connections to early hotspots may provide relevant 

information for tracking the COVID-19 spread in Germany and other countries, similar to what has been 

hypothesized for the US (M. Bailey et al. 2019). In other words, a number of articles reported that wealthy 

inhabitants from the New York area fled to other parts of the U.S. (T Tully und S Stowe 2020), which could 

have served as a vector that could have potentially spread the disease. In fact , both geneticists and 

epidemiologists reported that trips starting in New York seeded much of the first wave of COVID-19 

outbreaks in the USA (B. Carey und J. Glanz 2020). More important Coven and Gupta (2020) found that 

connectedness to New York predicted travel patterns from the city early in the pandemic. Therefore, social 

connections to early hotspots may thus provide relevant information for tracking the COVID-19 spread. 
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Analysis 

In this section, I explore how the domestic spread of confirmed COVID-19 cases is related to social 

connectedness to an early COVID-19 hotspot in Germany, in other words, I analyze the relationship 

between COVID-19 prevalence and social ties to Heinsberg municipality. Heinsberg is a location on the 

far west side of Germany which allegedly experienced the first major outbreak of this disease (Robert Koch 

Institut; LandNRW.de; Focus Online; Frankfurter Allgemeine; Hamburger Abendblatt). 

 

Figure 1 shows heat maps with the distribution of COVID-19 cases per 10,000 residents across German 

municipalities as of as of  March 30  2020 (Badr et al. 2020), with darker colors corresponding to higher 

COVID-19 prevalence (for a map with data as of November 22, 2020, refer to Figure 4). It stands out that 

a second location located to the Eastern opposite side of the country, in the state of Bavaria, right at the 

border with Czech Republic, recorded a high number of confirmed COVID-19 by late March. Interestingly, 

two municipalities adjacent to that second hotspot in East Germany experienced higher prevalence rates 

than any of the locations (inside Germany) that border Heinsberg, as illustrated by the lighter colors of 

municipalities next to Heinsberg. One more interesting fact about that graph is that Heinsberg is also located 

at the border with another country. Nonetheless, that neighboring country is closer to Germany regarding a 

myriad of development indicators compared to Czech Republic. 

 

Two more municipalities report high numbers of confirmed cases. These two locations are also located at 

the border with Austria and in the state of Bavaria. These are adjacent municipalities. However, these two 

experienced a lower rate of COVID-19 confirmed cases per 10,000 residents. One last thing that stands out 

from Figure 1 is that also the West-southern state of Baden-Württemberg also hosted to municipalities with 

high rates of COVID-19 confirmed cases by March 30, 2020. It is noteworthy that in that state, those two 

most affected municipalities do not border (the two neighboring, namely, France on the west and 

Switzerland in the South) other countries. 

 

Figure 2 shows a heat map of the social connectedness Heinsberg to all other German municipalities; darker 

colors correspond to stronger social ties. 
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Figure 1. COVID-19 Cases in German municipalities with data as of March 30, 2020 

 

Figure 2. Social connectedness of Heinsberg 

 

 

Method and data 

In this section, I explore the relationship between confirmed COVID-19 cases as of March 30, 2020 and 

non-geographical social ties to Heinsberg in a regression framework. Specifically, I make use of the so-

called social connectedness index. That measure is based on a snapshot of all active Facebook users from 
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one month in particular from year 2019, namely July, namely those that reside in Germany and that 

interacted through Facebook over the 30 days prior to the date of the snapshot1. Having said that, the relative 

probability of social connections between German municipalities is measured according to the following 

Equation 1 (Bailey et al. 2018): 

 

Equation 1: (Relative Probability of) Social Connectedness 

𝑆𝑜𝑐𝑖𝑎𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 =
𝐹𝐵_𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖𝑗

𝐹𝐵_𝑈𝑠𝑒𝑟𝑠𝑖 ∗ 𝐹𝐵_𝑈𝑠𝑒𝑟𝑠𝑗
 

 

The upper part of the division is the total number of connections between persons residing in municipality 

i and individuals living in municipality j. The two elements of the denominator represent the number of 

eligible Facebook users in each German municipality. The division by the product of the number of 

Facebook users in the two German municipalities allows controlling for the fact that we will observe more 

friendship links between municipalities with higher numbers of Facebook users. In other words, this index 

proxies for the probability that two random users of this platform across the two locations are friends with 

each other, namely if 𝑆𝑜𝑐𝑖𝑎𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗 is, for instance, twice as large, a Facebook user in location 

i is about twice as likely to be connected with a given user of this platform in location j.  

 

In comparison to previous work that used data from other social media platforms (Ginsberg et al. 2009; 

Garzon-Alfonso und Rodriguez-Martinez 2018; Gittelman et al. 2015; Generous et al. 2014; CORREIA et 

al. 2016), the network-based and stable variable of interest in this article is less likely to suffer from changes 

in internet behavior or seasonality. Moreover, the social connectedness index does not require people to 

have experienced symptoms, which potentially allows identifying municipalities at-risk even before disease 

transmission. last, given that the main explanatory variable from this article is based only on aggregated 

connections (vis-a-vis individual movement), it is easily accessible to the public and consistently available 

for a large number of regions around the world. While some of the above-mentioned studies build their 

analysis with information on local networks, I am unaware of any work that uses a measure with the (high) 

level of coverage, granularity and thus comparability that the index used in this article offers 

in order to explore the above-mentioned relationship between COVID-19 prevalence and social 

connectedness to Heinsberg, I estimate for each municipality i the following equation: 

Equation 2: Empirical Specification 

𝐶𝑂𝑉𝐼𝐷19 𝑐𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 10k 𝑖 = 𝛽0 + 𝛽1 log(𝑆𝑜𝑐𝑖𝑎𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗) + 𝑋𝑖 + 𝛿𝑖𝑗 + 𝜀𝑖 

 

                                                           
1 refer to "Appendix: Social Connectedness versus physical distance across Europe" for a graphical representation of this 
variable across Europe, and for a short analytical illustration about how it is associated with geographical distance 
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The vector 𝑋𝑖 includes demographic measures, particularly population density and GDP per inhabitant. The 

parameter 𝛿𝑖𝑗 consists of dummy variables for the quantile of the geographic distance from each German 

municipality to the identified hotspot location. For summary statistics, refer to Table 5 

 

Results 

 

Column number one of the following Table 1 shows the Association between purely non-geographical 

social distance between German municipalities and the COVID-19 hotspot, and the number of COVID-19 

confirmed cases per 10,000 residents in Germany. I exclude those municipalities within 50 miles of 

Heinsberg while those areas have strong social links to Heinsberg, they are also close enough 

geographically such that their populations might interact physically with Heinsberg residents even in the 

absence of social links (e.g., in supermarkets, churches).  One concern with interpreting these initial 

relationships is that they might be picking up other factors that affect the spread of COVID-19 and that are 

associated with social connectedness. Namely, even after dropping municipalities within 50 miles of 

Heinsberg, the correlations might be primarily showing geographic distance to Heinsberg (which is related 

to the number of friendship links to Heinsberg). The next model adds geographic distance to the picture 

(measured with 20 dummy variables2 ; I omit the coefficients corresponding to dummy variables for space 

purposes. Refer to Table 3 in the appendix for full results). We observe that both the sign (negative) and 

the level of statistical significance of our variable of interest does not vary between these two models. Only 

the magnitude of the estimated coefficient differs. In column number three, I include demographic factors 

to the equation. Even after controlling for geographic distance, per capita income and population density, 

the coefficient for social connectedness is still negative, highly statistically significant and slightly of a 

smaller dimension compared to the estimated coefficient of model number two. 

 

 

 

 

 

 

 

                                                           
2 In Table 3, I implement alternative parametrizations of geographic distance, specifically, I estimate models with 40, 60, 80 
and 100 dummies. These numbers of dummy variables are based on results from the US and Italy, to which I referred to in 
this text, accounted for geography with different numbers for each case. Namely, 20 dummies for the quantile of the 
province distance to the province of interest for Italy and 100 dummies for the percentile of the county distance to the 
County of interest for the US. Those results, there is no sufficient evidence to believe that the way in which geographic 
distance is parametrized affects dramatically the size/sign/statistical significance of either the main variable nor of the 
controls. 
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Table 1. Main models 

log_sci -2.34 -6.01 -5.33 

 (0.73)*** (1.61)*** (1.64)*** 

gdp_per_hab   0.00 

   (0.00)*** 

pop_per_km   -0.00 

   (0.00)* 

Constant 27.62 65.51 57.69 

 (6.17)*** (15.87)*** (16.46)*** 

Chi2  . . . 

Df_M  1 20 22 

P  . . . 

Ll  -1,260.10 -1,241.58 -1,235.14 

N 391 391 391 

* p<0.1; ** p<0.05; *** p<0.01 

 

Figure 3 visualizes results from columns number two and three from Table 2 using binned binscatter plots3 

with municipalities more than 50 kilometers from Heinsberg as the unit of observation. To generate that 

plot I group the main explanatory variable into equal-sized bins and graph the average against the 

corresponding average case density. The Red line follows quadratic fit regressions. The right panel is 

constructed similarly, nonetheless, I first regress the social connectedness index and COVID-19 confirmed 

cases per 10,000 inhabitants on the above-mentioned control variables, next, I plot the residualized values 

on each axis. In the left panel we observe a U-shaped relationship between COVID-19 prevalence and 

social ties to Heinsberg (refer to Appendix. Results with data from late November 22, 2020 for results 

using more recent data). In the right Panel of Figure 3, I plot of the relationship between social 

connectedness to Heinsberg and COVID-19 cases that controls for a number of these possible confounding 

covariates (in addition to excluding geographically adjacent municipalities)4. Conditional on these other 

factors, the right Panel of Figure 3 shows a negative relationship between COVID-19 cases as of March 20, 

2020 and social connectedness to Heinsberg (refer to Appendix. Results with data from late November 

22, 2020 for results using more recent data). With these controls, a 1% increase of a municipality’s social 

                                                           
3 This type of graphs groups the explanatory variable into equal-sized bins, then, it computes the average of the x-axis and y-
axis covariates within each bin, and finally, a scatterplot of these data points is generated.  The result is a non-parametric 
visualization of the conditional expectation function 
4 I control for the geographic distance between each municipality and Heinsberg non-parametrically by including 20 dummies 
for percentiles of that distance. 
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connectedness to Heinsberg is associated with a decrease of about -0.0533 COVID-19 cases per 10,000 

residents. 5  

 

 

Figure 3. Binscatter (Heinsberg as unit of observation, data from March 30, 2020) 

 

 

 

 Discussion 

 

Whereas the results, regardless of whether we use data from the beginning of the pandemic in Germany in 

late March or from late November 2020, highlight the relevance of accounting for not only geographical 

but also – and perhaps more important – none geographical connectedness amongst individuals (illustrated 

by Facebook friendships in this paper), the analysis referred to a distinct shape of the Association between 

non-graphical social connectedness and the prevalence (rate per 10,000 people) of COVID-19 than the one 

previously registered in US municipalities. Even controlling for geography and key demographic factors 

                                                           
5 We  can interpret these results for different values (University of Virginia Library). In order to calculate the figure, namely a 
10% increase, I multiplied the coefficient by log(1.10). In other words, for every 10% increase in the independent variable, our 
dependent variable increases by about -5.33 * log(1.10) = -0.22. Alternatively, if I divide the estimated coefficient by 100, I 
obtain that for every 1% increase in the independent variable, our dependent variable decreases by about -0.0533. An 
alternative interpretation is that, controlling for certain demographic factors, a one standard deviation increase in 
municipalities' social connectedness to the hotspot is associated with a decrease of about -5.33 Covid 19 confirmed cases per 
10,000 inhabitants (Chetty et al. 2013).  
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(per capita income and population density, for comparability purposes), the relationship between social 

connectedness and confirmed COVID-19 cases in Germany follows a U-shape, in other words, high 

numbers of COVID-19 confirmed cases seem to have been related to low non-geographical social 

connectedness. However, after a given point of social connectedness is reached, the above-mentioned 

association inverts and starts to grow, which can be interpreted as preliminary evidence that a high 

Facebook based social connectivity is related to high COVID-19 prevalence values after a given threshold 

has been reached. The latter seems more in line with the manifestation of this phenomenon in Italian 

provinces up until March 30, 2020 (Kuchler et al. 2020a). In Italy, when authors do not control for the 

covariates above-mentioned, the relationship between Facebook based social connectedness and the rate of 

confirmed COVID-19 cases per 10,000 inhabitants shows a more subtle U-shaped. 

 

Conclusion and Avenues For For Future Research 

The main question that emerges from the results here presented is why social connectedness between 

German municipalities and a COVID-19 hotspot location in that country is negatively associated with 

COVID-19 prevalence, contrary to what has been found in the USA and Italy (Kuchler et al. 2020b), and 

also opposed to the relationship between Facebook-based connectedness and international trade (Bailey et 

al. 2020a). That question can begin to be explored by looking at the determinants of social connectedness 

in Germany, similar to what has been done already for the USA at the municipality level (Bailey et al. 2018) 

and Europe at the regional level (Aref et al. 2020). 

 

Epidemiological scholarship can build on the above-mentioned works and the evidence provided in this. 

At a broader level, I results can motivate and hopefully contribute to the literature on the 

determinants/effects of social networks (Bailey et al. 2020b; Mossay und Picard 2011; Brueckner und 

Largey 2008; Bailey et al. 2020a, 2020a). 
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Appendix COVID-19 Cases in German municipalities with data as of November 22, 2020 

Figure 4.COVID-19 Cases in German municipalities with data as of November 22, 2020 

 

Appendix. Robustness checks 

When we only estimate a univariate model of distance in kilometers between the hotspot municipality and 

the rest of locations, one could easily think based on the (positively signed coefficient) result that larger 

distances between hotspot and the rest of municipalities is actually associated with a bigger prevalence of 

COVID-19, as can be seen in column number one of Table 2. This is probably due to a wrong measurement 

of distance. In fact, if we look at Figure 1, there are municipalities far away from the hotspot, especially in 

the two states located south from Germany; actually, we observe in Figure 1 that handful of municipalities  

right at the border with Czech Republic (East) and Austria (without) registered a high COVID-19 

prevalence, comparable to that of the hotspot. For that reason, in the next column from Table 2 I estimate 

a model that measures distance between municipalities and the hotspot with 20 dummies for the quantile 

of the municipality distance to the hotspot location. In that model, we actually observe that the way in which 

we account for distance between hotspot and other locations is not trivial. 

 

The third model shows the result of regressing our non-geographical, Facebook based social connectedness 

index on the rate of confirmed cases of COVID-19 per 10,000 inhabitants. Both the negative sign and the 

magnitude of the estimated coefficient of our social connectedness index corresponding to this univariate 

model and a bivariate one where geographical distance (not represented by dummies) is controlled for, are 

(almost) identical; interestingly, though, the size of estimated coefficient of the geographic distance 

covariate and the sign of it do change when social connectedness is accounted for in the same model through 
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a geographical and a non-geographical variable (column number four). If we add demographic controls to 

the latter (column number six), none of the distance variables are statistically significant. 

 

Column number five accounts for geographical distance with 20 dummies for the quintiles of the 

municipality distance to the hotspot location and for non-geographical social distance as well. We observe 

that few geographical dummies are not statistically significant; nonetheless, they are all negatively signed, 

in line with the coefficient for social distance, which is also statistically significant. This statistical 

characteristics are robust to the inclusion of demographic factors (both per capita income and population 

density are statistically significant, too), as we can see in the last column of Table 2. The relationship 

between COVID-19 prevalence and social distance (accounting for geographic distance – with dummy 

variables, as above described – and demographics) is shown in Figure 3. 

 

Table 2. Full (Main) Models 

log_dist 1.46   -0.36  -0.06  

 (0.58)**   (1.07)  (1.10)  

1bn.dist_gro

up 

 -0.31   -2.98  -2.80 

  (2.27)   (2.35)  (2.33) 

2.dist_group  2.11   -1.94  -2.70 

  (2.27)   (2.48)  (2.58) 

3.dist_group  0.34   -6.81  -7.22 

  (2.27)   (2.94)**  (3.05)** 

4.dist_group  -0.46   -8.02  -8.25 

  (2.27)   (3.02)***  (3.09)*** 

5.dist_group  -0.57   -8.42  -8.67 

  (2.27)   (3.07)***  (3.16)*** 

6.dist_group  -0.37   -8.14  -8.60 

  (2.27)   (3.05)***  (3.18)*** 

7.dist_group  -0.95   -9.50  -9.70 

  (2.27)   (3.20)***  (3.32)*** 

8.dist_group  0.27   -8.22  -8.68 

  (2.27)   (3.19)**  (3.31)*** 

9.dist_group  1.93   -7.23  -7.47 

  (2.27)   (3.32)**  (3.44)** 

10.dist_grou  2.40   -7.00  -7.60 
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p 

  (2.27)   (3.37)**  (3.52)** 

11.dist_grou

p 

 2.66   -7.00  -7.15 

  (2.27)   (3.42)**  (3.57)** 

12.dist_grou

p 

 1.30   -8.31  -8.30 

  (2.27)   (3.41)**  (3.52)** 

13.dist_grou

p 

 1.31   -8.05  -8.20 

  (2.27)   (3.36)**  (3.49)** 

14.dist_grou

p 

 -0.14   -9.58  -9.49 

  (2.27)   (3.37)***  (3.53)*** 

15.dist_grou

p 

 4.05   -5.59  -6.16 

  (2.27)*   (3.41)  (3.54)* 

16.dist_grou

p 

 -1.06   -10.02  -9.93 

  (2.27)   (3.28)***  (3.42)*** 

17.dist_grou

p 

 5.00   -4.16  -4.45 

  (2.27)**   (3.32)  (3.43) 

18.dist_grou

p 

 3.84   -5.29  -5.74 

  (2.27)*   (3.31)  (3.47)* 

19.dist_grou

p 

 2.00   -7.49  -7.57 

  (2.27)   (3.38)**  (3.54)** 

log_sci   -2.34 -2.73 -6.01 -1.72 -5.33 

   (0.73)*** (1.35)** (1.61)*** (1.36) (1.64)*** 

gdp_per_hab      0.00 0.00 

      (0.00)*** (0.00)*** 

pop_per_km      -0.00 -0.00 

      (0.00) (0.00)* 
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Constant -0.51 6.58 27.62 32.93 65.51 19.86 57.69 

 (3.31) (1.83)*** (6.17)*** (16.84)* (15.87)**

* 

(17.25) (16.46)**

* 

Chi2  . . . . . . . 

Df_M  1 19 1 2 20 4 22 

P  . . . . . . . 

Ll  -

1,262.09 

-1,248.82 -1,260.10 -

1,260.04 

-1,241.58 -1,252.24 -1,235.14 

N 391 391 391 391 391 391 391 

* p<0.1; ** p<0.05; *** p<0.01 

 

  



15 
 

 

Table 3. Models with different parameterization of geographic distance 

 

log_sci -5.33 -6.12 -4.68 -4.92 -4.73 

 (1.64)*** (1.76)*** (1.76)*** (1.86)*** (1.81)*** 

1bn.dist_group -2.80 -10.19    

 (2.33) (6.39)    

2.dist_group -2.70 -11.73    

 (2.58) (6.48)*    

3.dist_group -7.22 -13.17 -3.00 -9.21  

 (3.05)** (6.69)** (3.76) (6.55)  

4.dist_group -8.25 -11.85 -4.45 -10.74 -3.25 

 (3.09)*** (6.77)* (3.77) (6.58) (4.45) 

5.dist_group -8.67 -13.47 -4.45 -10.67 -3.51 

 (3.16)*** (6.84)** (3.93) (6.68) (4.40) 

6.dist_group -8.60 -17.60 -1.72 -11.78 -4.53 

 (3.18)*** (7.18)** (4.03) (6.78)* (4.51) 

7.dist_group -9.70 -17.54 -4.06 -11.93 -4.52 

 (3.32)*** (7.16)** (4.01) (6.95)* (4.50) 

8.dist_group -8.68 -18.23 -5.08 -9.26 -5.95 

 (3.31)*** (7.18)** (4.12) (6.92) (4.61) 

9.dist_group -7.47 -19.00 -8.13 -11.71 -4.59 

 (3.44)** (7.20)*** (4.51)* (7.00)* (4.79) 

10.dist_group -7.60 -18.28 -8.58 -11.54 -4.54 

 (3.52)** (7.26)** (4.49)* (6.91)* (4.78) 

11.dist_group -7.15 -19.88 -7.00 -12.44 -1.40 

 (3.57)** (7.23)*** (4.37) (7.18)* (4.71) 

12.dist_group -8.30 -18.94 -7.67 -15.87 -4.64 

 (3.52)** (7.26)*** (4.51)* (7.42)** (4.72) 

13.dist_group -8.20 -19.15 -9.55 -15.33 -5.92 

 (3.49)** (7.28)*** (4.44)** (7.41)** (4.81) 

14.dist_group -9.49 -20.55 -9.24 -14.48 -4.93 

 (3.53)*** (7.34)*** (4.50)** (7.37)* (4.96) 

15.dist_group -6.16 -19.91 -7.62 -16.41 -8.76 

 (3.54)* (7.40)*** (4.64) (7.40)** (5.18)* 
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16.dist_group -9.93 -19.71 -10.07 -15.33 -8.48 

 (3.42)*** (7.38)*** (4.47)** (7.39)** (5.18) 

17.dist_group -4.45 -18.69 -9.87 -16.90 -9.25 

 (3.43) (7.36)** (4.53)** (7.43)** (5.22)* 

18.dist_group -5.74 -16.61 -8.34 -17.64 -6.19 

 (3.47)* (7.46)** (4.51)* (7.40)** (5.04) 

19.dist_group -7.57 -19.56 -9.25 -16.06 -9.69 

 (3.54)** (7.48)*** (4.66)** (7.47)** (5.22)* 

gdp_per_hab 0.00 0.00 0.00 0.00 0.00 

 (0.00)*** (0.00)*** (0.00)*** (0.00)*** (0.00)** 

pop_per_km -0.00 -0.00 -0.00 -0.00 -0.00 

 (0.00)* (0.00)** (0.00)* (0.00)** (0.00) 

20.dist_group  -18.86 -9.88 -15.82 -8.62 

  (7.51)** (4.54)** (7.52)** (5.15)* 

21.dist_group  -17.67 -11.08 -16.44 -9.80 

  (7.56)** (4.68)** (7.47)** (5.14)* 

22.dist_group  -18.95 -10.48 -18.53 -9.51 

  (7.48)** (4.65)** (7.45)** (5.24)* 

23.dist_group  -16.77 -9.23 -16.78 -9.75 

  (7.66)** (4.74)* (7.47)** (5.15)* 

24.dist_group  -17.55 -10.36 -15.41 -9.57 

  (7.46)** (4.65)** (7.37)** (5.24)* 

25.dist_group  -20.35 -7.69 -18.17 -10.14 

  (7.58)*** (4.76) (7.62)** (5.28)* 

26.dist_group  -18.88 -9.68 -16.32 -6.94 

  (7.50)** (4.65)** (7.54)** (5.30) 

27.dist_group  -18.82 -1.73 -17.63 -10.78 

  (7.51)** (4.92) (7.50)** (5.16)** 

28.dist_group  -20.89 -13.02 -18.69 -9.98 

  (7.51)*** (4.68)*** (7.56)** (5.22)* 

29.dist_group  -19.48 -8.13 -17.80 -11.36 

  (7.58)** (4.83)* (7.61)** (5.27)** 

30.dist_group  -14.88 -8.52 -18.75 -7.49 

  (7.55)** (4.83)* (7.65)** (5.13) 

31.dist_group  -18.75 -10.76 -16.38 -11.42 
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  (7.51)** (4.91)** (7.65)** (5.31)** 

32.dist_group  -20.64 -4.81 -19.12 -9.11 

  (7.41)*** (4.91) (7.50)** (5.36)* 

33.dist_group  -20.44 -7.89 -15.74 -10.60 

  (7.49)*** (4.83) (7.76)** (5.35)** 

34.dist_group  -15.35 -7.42 -14.72 -10.30 

  (7.49)** (4.88) (7.60)* (5.26)* 

35.dist_group  -14.72 -7.40 -17.99 -11.37 

  (7.41)** (5.06) (7.60)** (5.25)** 

36.dist_group  -15.63 -7.02 -8.14 -10.97 

  (7.43)** (4.81) (7.80) (5.40)** 

37.dist_group  -17.12 -8.28 -20.27 -10.96 

  (7.55)** (4.88)* (7.63)*** (5.36)** 

38.dist_group  -15.76 -10.59 -18.48 -11.76 

  (7.53)** (4.90)** (7.77)** (5.48)** 

39.dist_group  -20.78 -11.39 -15.68 -9.04 

  (7.57)*** (4.84)** (7.70)** (5.43)* 

2bn.dist_group   -2.37 -9.75  

   (3.65) (6.53)  

40.dist_group   -6.78 -18.04 -11.83 

   (4.91) (7.67)** (5.33)** 

41.dist_group   -8.13 -14.79 -8.33 

   (4.80)* (7.88)* (5.34) 

42.dist_group   -10.15 -13.23 -8.07 

   (4.94)** (7.83)* (5.53) 

43.dist_group   -8.40 -17.06 -9.79 

   (4.80)* (7.82)** (5.40)* 

44.dist_group   -11.29 -14.64 -10.76 

   (4.94)** (7.67)* (5.34)** 

45.dist_group   -10.59 -18.35 2.55 

   (4.91)** (7.81)** (5.56) 

46.dist_group   0.76 -12.36 -13.39 

   (4.97) (7.86) (5.52)** 

47.dist_group   -10.34 -15.91 -13.84 

   (4.78)** (8.01)** (5.38)** 
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48.dist_group   -10.82 -14.43 -7.74 

   (4.80)** (7.68)* (5.58) 

49.dist_group   -10.56 -15.65 -10.14 

   (4.73)** (7.75)** (5.44)* 

50.dist_group   -9.95 -16.72 -10.52 

   (4.82)** (7.90)** (5.45)* 

51.dist_group   -4.38 -18.86 -7.08 

   (4.84) (7.79)** (5.55) 

52.dist_group   -3.51 -19.43 -11.99 

   (4.67) (7.69)** (5.58)** 

53.dist_group   -6.70 -13.34 -4.24 

   (4.86) (7.83)* (5.79) 

54.dist_group   -4.73 -15.85 -8.98 

   (4.87) (7.81)** (5.62) 

55.dist_group   -7.02 -16.83 -7.28 

   (4.81) (7.72)** (5.47) 

56.dist_group   -6.60 -18.27 -10.30 

   (4.83) (7.77)** (5.51)* 

57.dist_group   -1.17 -18.59 -5.90 

   (5.01) (7.77)** (5.64) 

58.dist_group   -11.18 -14.79 -8.29 

   (4.80)** (7.78)* (5.68) 

59.dist_group   -10.68 -19.08 -9.10 

   (4.92)** (7.90)** (5.76) 

60.dist_group    -19.40 -8.32 

    (7.73)** (5.54) 

61.dist_group    -5.30 -6.93 

    (7.90) (5.37) 

62.dist_group    -12.87 -7.99 

    (7.85) (5.62) 

63.dist_group    -19.54 -12.03 

    (7.69)** (5.63)** 

64.dist_group    -17.86 -11.31 

    (7.64)** (5.57)** 

65.dist_group    -18.78 -12.02 
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    (7.69)** (5.43)** 

66.dist_group    -18.42 -6.47 

    (7.78)** (5.57) 

67.dist_group    -17.47 -10.22 

    (7.72)** (5.67)* 

68.dist_group    -11.31 -7.19 

    (7.77) (5.48) 

69.dist_group    -14.49 -10.31 

    (7.73)* (5.51)* 

70.dist_group    -10.40 -10.77 

    (7.46) (5.59)* 

71.dist_group    -14.17 -11.35 

    (7.87)* (5.53)** 

72.dist_group    -11.42 -6.39 

    (7.74) (5.53) 

73.dist_group    -15.04 -12.03 

    (7.63)** (5.46)** 

74.dist_group    -17.23 -12.47 

    (7.82)** (5.77)** 

75.dist_group    -12.07 -12.36 

    (7.80) (5.46)** 

76.dist_group    -7.81 4.93 

    (7.83) (5.70) 

77.dist_group    -18.72 -5.86 

    (7.76)** (5.75) 

78.dist_group    -16.87 -8.83 

    (7.90)** (5.51) 

79.dist_group    -19.66 -13.16 

    (7.78)** (5.45)** 

3bn.dist_group     -2.46 

     (4.41) 

80.dist_group     -11.13 

     (5.40)** 

81.dist_group     -13.39 

     (5.52)** 
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82.dist_group     -10.36 

     (5.40)* 

83.dist_group     -10.36 

     (5.53)* 

84.dist_group     -10.17 

     (5.52)* 

85.dist_group     -5.19 

     (5.54) 

86.dist_group     -7.04 

     (5.44) 

87.dist_group     -3.24 

     (5.47) 

88.dist_group     -3.59 

     (5.36) 

89.dist_group     -8.23 

     (5.57) 

90.dist_group     -6.49 

     (5.52) 

91.dist_group     -2.69 

     (5.44) 

92.dist_group     -9.54 

     (5.55)* 

93.dist_group     -12.08 

     (5.60)** 

94.dist_group     -3.04 

     (5.53) 

95.dist_group     1.93 

     (5.57) 

96.dist_group     -11.44 

     (5.66)** 

97.dist_group     -13.11 

     (5.47)** 

98.dist_group     -7.66 

     (5.76) 

99.dist_group     -12.95 
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     (5.51)** 

Constant 57.69 75.04 52.91 62.64 54.38 

 (16.46)*** (19.65)*** (18.04)*** (20.70)*** (18.66)*** 

Chi2  . . . . . 

Df_M  22 42 61 81 100 

P  . . . . . 

Ll  -1,235.14 -1,227.79 -1,204.22 -1,194.98 -1,177.50 

N 391 391 391 391 391 

* p<0.1; ** p<0.05; *** p<0.01 

 

Appendix: Social Connectedness versus physical distance across Europe 

  

The heat maps in Figure 5 plot the social network distributions of (the German municipalities of) Kiel in 

the upper panel and Freiburg im Breisgau in the bottom panel (both marked in red); darker colors refer to 

higher connectedness/probability of connection. In other words, that graph shows the relative probability 

of connection (measured by Equation 1) of all European NUTS36 locations j with two locations i (Kiel and 

Freiburg)7.  

 

In both examples, the strongest social connections are to geographically adjacent units. however ,  it also 

stands out that  Freiburg shows  stronger connections  with   the majority  of nuts3  locations from  

neighboring Switzerland and  Austria   than with  (at least three locations)  in  Easter Germany and  just  as  

many connections  compared to neighboring  states within  Germany. more interesting ,  some  nuts3 

locations in the Balkans  share  more  connections  with this location  than, for instance,    neighboring 

Poland  and Czech Republic, or Southeast Austria and Hungary. in the upper panel we observe ,  

interestingly,  that one location  in  the Balkans is  as connected  to  that northern  German city  as to  

adjacent  nuts3  locations in Germany and  has even more  social connections  compared to  most of  nuts3 

locations  in Germany.  

 

I will now assess the relationship between geographical distance and the variable of interest between 

European nuts three locations using Equation 3: 

 

Equation 3: Empirical Specification 

log (𝑆𝑜𝑐𝑖𝑎𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑖𝑗) = 𝛽0 + 𝛽1 log(𝑑𝑖𝑗) + 𝑋𝑖𝑗 + 𝛿𝑖 + 𝛿𝑗 + 𝜀𝑖𝑗 

                                                           
6 NUTS3 locations outside of Germany might not be municipalities 
7 The measures are scaled from the 20th percentile of all i, j pairs (in Europe). 
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Figure 5. Heat maps of the social network distributions of Kiel and Freiburg im Breisgau  
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The unit of observation is a pair of German municipalities (a.k.a. NUTS3 locations). The response variable 

is the log of Social Connectedness between locations i and j (see Equation 1). The – population weighted – 

geographic distance is denoted by log(𝑑𝑖𝑗), 𝛿𝑖 and 𝛿𝑗 denote fixed effects for locations 𝑖 and 𝑗 8 , which 

allows to control for average differences of Facebook usage patterns across NUTS3 units, population levels 

and any other characteristics that vary at the county level. The vector 𝑋𝑖𝑗 will include measures of dis-

/similarity along (at least) the following demographic and socioeconomic factors: education, income, 

unemployment, language, and industry similarity. For now, I will only look at the relationship with distance. 

 

In Table 4 we observe that a 10% increase in the distance between two locations is associated with a 13.3% 

decline in the connectedness between those locations9. This relationship is comparable to that observed for 

U.S. county pairs – 14.8% – (Bailey et al. 2018)10 . 

 

Table 4. Regression of Social- on Geographic (distance) Connectedness 

 (1) 

log_distance -1.327*** 

 (0.022) 

  

_cons 15.055*** 

 (0.151) 

  

NUTS3 FEs Y 

Number of Observations 2.311.920 

R2 0.560 

Standard errors are double clustered by each region i 

and region j in a region pair.  

Significance levels: *(p<0.10), **(p<0.05), 

***(p<0.01). 

                                                           
8 The log-linear, the double standard error clustering and population-weighted distance specifications follow previous 

evidence/scholarship (Bailey et al. 2018, Bailey et al. 2020b) 
9 Similar to gravity equations from the trade literature, that type of analysis estimates the equilibrium relationship between 

geographic distance and social connectedness, in other words, not necessarily a causal effect of one on the other ( Bailey et al. 

2018). 
10 however, in order to determine whether distance is a less or more important determinant of social connectedness in Europe 

than it is in the United States, one needs to compare the percentage of the variation in social connectedness that distance by itself 

explains, in other words, the percentage not explained by the fixed effects 
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Appendix. Results with data from late November 22, 2020 

 

Figure 6 visualizes results of analysis with data from late November 2020 using binned binscatter plots11. 

In the left panel we observe a U-shaped relationship between COVID-19 prevalence and social ties to 

Heinsberg (when we use data from March 30, 2020, the direction of the estimated effect seems unchanged, 

as can be seen in Figure 3).  

One concern with interpreting these initial relationships is that they might be picking up other factors that 

affect the spread of COVID-19 and that are associated with social connectedness. Namely, even after 

dropping municipalities within 50 miles of Heinsberg, the correlations might be primarily showing 

geographic distance to Heinsberg (which is related to the number of friendship links to Heinsberg). In the 

same vein, including social connectedness might not improve predictive power for models that already 

control for some of these other factors. Having said that, In the right Panel of Figure 6. Binscatter 

(Heinsberg as unit of observation, data from November 22, 2020), I present a binscatter plot of the 

relationship between social connectedness to Heinsberg and COVID-19 cases that controls for a number of 

these possible confounding covariates (in addition to excluding geographically adjacent municipalities)12. 

Specifically I control for income and population density. Conditional on these other factors, the right Panel 

of Figure 6 shows a negative relationship between COVID-19 cases as of November 22, 2020 and social 

connectedness to Heinsberg (again, when we use data from March 30, 2020, the direction of the estimated 

effect seems unchanged, as can be seen in Figure 3).  

                                                           
11 this type of graph groups the variable from the X axis into bins of equal size, next, the mean of the x-axis and y-axis variables 

within each bin is calculated, and finally a scatterplot of these data points is generated, resulting in a non-parametric visualization 

of the conditional expectation function 
12 I control for the geographic distance between each municipality and Heinsberg non-parametrically by including 20 dummies 

for percentiles of that distance. 
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Figure 6. Binscatter (Heinsberg as unit of observation, data from November 22, 2020) 

 

 

Appendix. Summary statistics 

Table 5. Summary statistics 

Variable Obs Mean Std. Dev. Min Max 

      

total_cases 391 156.6982 231.8249 4 2756 

cases_pe~10k 391 7.776851 6.161148 0.9172388 64.48508 

log_sci 391 8.470694 0.4239693 7.715569 10.35587 

scaled_sci 391 5356.437 3507.68 2243 31441 

pop_2018 391 193829.4 170605.4 34270 1830584 

      

pop_per_km 391 522.913 687.8328 36.2 4721.9 

gdp_per_hab 391 36683.38 15965.12 16200 168000 

dist 391 333.1581 138.3681 57.95338 614.6484 

log_dist 391 5.691568 0.5350272 4.059639 6.421051 

dist_group 391 9.71867 5.654373 0 19 

      

dist_group      

1 391 0.0511509 0.2205877 0 1 

2 391 0.0511509 0.2205877 0 1 

3 391 0.0511509 0.2205877 0 1 



26 
 

4 391 0.0511509 0.2205877 0 1 

      

5 391 0.0511509 0.2205877 0 1 

6 391 0.0511509 0.2205877 0 1 

7 391 0.0511509 0.2205877 0 1 

8 391 0.0511509 0.2205877 0 1 

9 391 0.0511509 0.2205877 0 1 

      

10 391 0.0511509 0.2205877 0 1 

11 391 0.0511509 0.2205877 0 1 

12 391 0.0511509 0.2205877 0 1 

13 391 0.0511509 0.2205877 0 1 

14 391 0.0511509 0.2205877 0 1 

      

15 391 0.0511509 0.2205877 0 1 

16 391 0.0511509 0.2205877 0 1 

17 391 0.0511509 0.2205877 0 1 

18 391 0.0511509 0.2205877 0 1 

19 391 0.0511509 0.2205877 0 1 
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